首页> 外文OA文献 >A Space-time Smooth Artificial Viscosity Method For Nonlinear Conservation Laws
【2h】

A Space-time Smooth Artificial Viscosity Method For Nonlinear Conservation Laws

机译:非线性时空光滑人工粘性方法   保护法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We introduce a new methodology for adding localized, space-time smooth,artificial viscosity to nonlinear systems of conservation laws which propagateshock waves, rarefactions, and contact discontinuities, which we call the$C$-method. We shall focus our attention on the compressible Euler equations inone space dimension. The novel feature of our approach involves the coupling ofa linear scalar reaction-diffusion equation to our system of conservation laws,whose solution $C(x,t)$ is the coefficient to an additional (and artificial)term added to the flux, which determines the location, localization, andstrength of the artificial viscosity. Near shock discontinuities, $C(x,t)$ islarge and localized, and transitions smoothly in space-time to zero away fromdiscontinuities. Our approach is a provably convergent, spacetime-regularizedvariant of the original idea of Richtmeyer and Von Neumann, and is provided atthe level of the PDE, thus allowing a host of numerical discretization schemesto be employed. We demonstrate the effectiveness of the $C$-method with threedifferent numerical implementations and apply these to a collection ofclassical problems: the Sod shock-tube, the Osher-Shu shock-tube, theWoodward-Colella blast wave and the Leblanc shock-tube. First, we use aclassical continuous finite-element implementation using second-orderdiscretization in both space and time, FEM-C. Second, we use a simplified WENOscheme within our $C$-method framework, WENO-C. Third, we use WENO with theLax-Friedrichs flux together with the $C$-equation, and call this WENO-LF-C.All three schemes yield higher-order discretization strategies, which providesharp shock resolution with minimal overshoot and noise, and compare well withhigher-order WENO schemes that employ approximate Riemann solvers,outperforming them for the difficult Leblanc shock tube experiment.
机译:我们引入了一种新方法,可将局部时空平滑人工粘度添加到非线性守恒律系统中,该非线性守恒律传播冲击波,稀疏性和接触不连续性,我们称其为C $方法。我们将注意力集中在一个空间维上的可压缩Euler方程上。我们方法的新颖之处在于将线性标量反应扩散方程与我们的守恒定律系统耦合,其解$ C(x,t)$是通量中附加的(和人工的)项的系数,确定人造粘度的位置,位置和强度。在接近冲击不连续点时,$ C(x,t)$较大且局部化,并且在时空中平稳地过渡到零点。我们的方法是Richtmeyer和Von Neumann的原始思想的可证明是收敛的,时空正则化的变量,并且在PDE级别上提供,因此允许使用大量的数值离散方案。我们通过三种不同的数值实现论证了$ C $方法的有效性,并将其应用于一系列经典问题:Sod冲击管,Osher-Shu冲击管,Woodward-Colella冲击波和Leblanc冲击管。首先,我们使用经典的连续有限元实现,在时空上使用二阶离散化FEM-C。其次,我们在$ C $方法框架WENO-C中使用了简化的WENOscheme。第三,我们将WENO与Lax-Friedrichs通量以及$ C $等式一起使用,并将其称为WENO-LF-C。所有这三种方案都产生了高阶离散化策略,从而提供了具有最小过冲和噪声的竖琴冲击分辨率,并进行比较在采用近似Riemann求解器的高阶WENO方案中表现出色,在困难的Leblanc激波管实验中表现出色。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号